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ABSTRACT

The most threatening disease to the oil palm is Basal Stem Rot (BSR) disease caused by Ganoderma 
boninense. Besides matured oil palm trees, palm seedlings are susceptible to BSR disease. Therefore, 
it is crucial to detect the symptoms of the disease at an early stage so that the infected plants can be 
treated immediately. This study focuses on growth monitoring to differentiate between the infected 
(INF) seedlings and non-infected (NONF) seedlings by using ground-based LiDAR. This study used 
one hundred INF seedlings and 20 NONF seedlings, where the NONF seedlings acted as a control. The 
parameters measured using LiDAR were the height, stem diameter, and point density of the seedlings, 
which were measured four times every two-week intervals. The results showed significant differences 
in mean height and mean stem diameter between INF and NONF seedlings. Results from the LiDAR 
measurements were consistent with the manual measurements, with more than 86% correlations. In 
temporal measurements, the mean stem diameter for NONF seedlings consistently increased over the 
six weeks, while for INF seedlings, it was inconsistent throughout the time. Furthermore, in the last 
three measurements, the mean point density of NONF seedlings was higher than that of INF seedlings, 
which indicated better growth of non-infected seedlings than infected seedlings.

Keywords: Ganoderma boninense, height, infected oil 
palms, point clouds, stem diameter

INTRODUCTION 

Elaeis guineensis, or oil palm, is widely 
planted throughout Southeast Asia, where 
Malaysia is the world’s second-largest 
producer of palm oil. The planted area 
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reached 5.67 million hectares in 2022, with most of the area in Sabah and Sarawak 
encompassing 3.13 hectares (Parveez et al., 2022). Over the last 30 years, the annual exports 
have been increasing steadily, thus making palm oil and palm-based products among the 
top 10 exports in the country. Oil palm is the most beneficial vegetable oil plant, which can 
be harvested for more than 25 years (Yap et al., 2021). In other oil-producing crops such 
as soybean and rapeseed, the output-to-input energy is 3:1, whereas the oil palm output-
to-input energy ratio is higher, 9:1 (Farraji et al., 2021). 

The most threatening disease to the oil palm is the Basal Stem Rot (BSR) disease caused 
by Ganoderma boninense (G. boninense). The disease could cause a reduction of fresh fruit 
bunch (FFB) yield up to 4.3 tonnes per hectare (Husin et al., 2020a). An estimated RM2.2 
billion in economic losses are incurred annually by Malaysia due to the fact that diseased 
trees are present in approximately 60% of plantation areas (Bharudin et al., 2022). Over 
the last 30 years, the annual exports have been increasing steadily, thus making palm oil 
and palm-based products among the top 10 exports in the country. The disease can affect 
mature trees and oil palm seedlings, with the latter group experiencing earlier and more 
severe symptoms (Azmi et al., 2020). The symptoms of a G. boninense infection resemble 
those of water stress and nutrient deprivation because G. boninense e generates enzymes 
that have the potential to break down cellulose, lignin layers, woody tissues, and xylem, 
significantly disrupting the flow of nutrients and water to the upper portion of the palm. 
There are no notable symptoms that the unaided eye may observe, so it is challenging to 
identify BSR signs in its early phases (Khairunniza-Bejo et al., 2021). 

When oil palm seedlings are infected with G. boninense, the first noticeable symptom is 
the appearance of fruiting bodies at the bole part. The fronds then exhibit mottling or partial 
leaf yellowing, and when more than 50% of the stem base has been internally destroyed, 
necrosis occurs. However, the fruiting body may or may not appear prior to the development 
of foliar symptoms, making visual identification difficult and commonly overlooked. In severe 
situations, the incapacity to complete photosynthesis may result in reduced development, 
particularly in girth, height and frond count (Zevgolis et al., 2022). However, because a 
fungal mass can emerge before or after leaf withering, it can be difficult to see with the 
unaided eye and frequently goes unnoticed. Infection with G. boninense can also be found 
in the longitudinal sectioning and roots of the infected bole, even in the absence of visible 
symptoms (Azmi et al., 2021). A dark discolouration and white mycelium poking through 
the root epidermis are typically seen in the longitudinal section, which indicates an upward 
infection progression within the seedling. However, because it is a labour-intensive 
procedure that can destroy trees, bole and root detection is not practicable in large-scale 
plantations. In typical nursery practice, a human-performed manual census is utilised to 
track the course of the disease in relation to different treatments. A human examination 
mostly depends on the disease’s outward manifestations. This approach is prone to inaccuracy 
because of little experience, arbitrary assessments, and situations with no symptoms.
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Some researchers have used laboratory methods for Ganoderma BSR disease detection. 
Madihah et al. (2014) developed immunoassay-based detection methods for G.boninense 
detection using Enzyme-linked immunosorbent assay (ELISA), which uses both monoclonal 
and polyclonal antibodies. Meanwhile, Akul et al. (2018) used Loop-mediated isothermal 
amplification (LAMP), which consists of two outer and two inner primer sets of the target 
DNA, to specifically identify the manganese superoxide gene (MnSOD) of G. boninense for 
the BSR disease detection in oil palm. Madihah et al. (2018) also used the LAMP method, 
where only the bug1A primer combination, out of eight sets of LAMP primers, which 
could differentiate between other actinomycetes/basidiomycetes fungus and Ganoderma 
non-pathogenic strains and pathogenic strains (G. boninense). In addition, Hilmi et al. 
(2022) used the Polymerase chain reaction (PCR) method created using a primer based 
on the ribosomal DNA internal transcribed spacer (ITS) region to identify a pathogenic 
Ganoderma species. The laboratory-based methods are reliable for early detection of the 
disease, but the cost is high, the procedure is complex and time-consuming, and some are 
unsuitable for outdoor conditions (Azuan et al., 2019). 

Remote sensing technology is a method that is reliable, fast, and suitable for outdoor 
activity. Laser scanning or LiDAR (Light Detection and Ranging) is one of the popular 
remote sensing techniques. A laser scanner uses high-speed laser technology to acquire 
millions of laser points to generate a three-dimensional (3D) set of data in space known 
as point clouds in a significantly short time. 3D laser scanners have the potential to 
distinguish information about plant biomass or plant architecture. Single plant organs 
can be determined automatically, and the volume of information can be determined, 
which has been shown to have a high correlation to the actual measurement (Buja et al., 
2021). The benefits of LiDAR-based systems over passive ones - which are limited by 
variations in light, atmospheric conditions, viewing angle, and canopy structure - include 
enhanced data-gathering flexibility, a high degree of automation, and the ability to deliver 
data at a rapid pace. The application of machine learning techniques for spatially and 
temporally distributed big data, along with a multi-sensor systems approach that focuses on 
conventional optimal estimation, can lead to increased accuracy in plant disease detection 
(Husin et al., 2022). One such technique is the fusion of LiDAR with existing electro-
optical sensors. These electro-optical sensors provide novel ways to predict and respond 
to plant disease when used on a range of platforms, including satellites, ground-based 
robotic vehicles, handheld devices, and aerial vehicles. LiDAR technology can be used in 
oil palm fields due to the benefits of obtaining detailed three-dimensional (3D) data without 
physical contact with the scanned object.

Crop health monitoring is increasingly using remote sensors, which provide plant 
disease detection and quantification at many evaluation levels in a non-destructive, 
spatialised manner. The advancement of sensor technology has helped the development of 
new precision agricultural techniques. Emerging methodologies for acquiring phenotypic 
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features through LIDAR shape profiling have been established, with the major metrics 
being the height and leaf area density (Fahey et al., 2020). Similarly, as part of a high-
throughput characterisation platform, LIDAR shape profiling is used to assess the canopy 
and above-ground biomass. The information could be used to analyse physiological 
growth and detect different substances in plants for ecological applications such as disease 
detection. The analysis of the use of LiDAR in phenotyping is still in its infancy, but the 
depth and variety of information provided by LIDAR in a short amount of time at a low 
cost, particularly in relation to plant structure, is advantageous. Metric measurements of 
trees were obtained using the laser scanning method, where various tree characteristics 
were extracted, i.e., diameters at breast height and tree height (Cabo et al., 2018; Liu et al., 
2018), crown diameter, crown area, height and tree volume (Wagers et al., 2021), crown 
base height, crown diameter and crown volume (Hillman et al., 2021) and diameter, stem 
curve and height measurements, crown width (Pitkänen et al., 2021) with high correlations 
and accuracies. Therefore, the applications of laser scanners for metric measurements were 
proven for accurate metric measurements aimed at growth monitoring and could be used 
for disease detection. For example, a Terrestrial Laser Scanner (TLS) was used by several 
researchers (Azuan et al., 2019; Husin et al., 2020a) to study the physical characteristics 
of mature oil palm trees on a plantation. Several parameters such as crown size, oil palm 
frond’s number, the gap between the oil palm fronds (measured in degree), number of 
unopened new fronds (also known as spears), perimeter and area of the trunk were used 
to detect and determine the level of BSR disease infection (Husin et al., 2020b; Husin et 
al., 2020c). These parameters were measured in different levels of infections, thus using 
statistical analysis, detection models, and machine learning integration. Early detection of 
BSR disease was done, and infected and non-infected oil palm trees were discriminated 
successfully.

Temporal data on palm seedling oil is important for monitoring the conditions of 
the seedlings and for offering disease-related data that can help clarify the course and 
dissemination of the disease (Husin et al., 2022). Meanwhile, the compilation and analysis 
of temporal data can be used to diagnose the disease early in advance of a potential 
diagnostic outbreak (Santoso et al., 2011; Azahar et al., 2011). Therefore, the objectives 
of this study were to measure the changes in oil palm seedlings due to infection of BSR 
disease using temporal data and to differentiate between healthy and BSR-infected oil palm 
seedlings using point cloud images taken by ground-based LiDAR sensors, also known as 
Terrestrial Laser Sanner (TLS). It is hypothesised that enzymes produced by G. boninense 
fungus have impaired the xylem and phloem tissues, which are essential for storing and 
moving water and carbohydrates in plants. Infected seedlings may endure significantly 
low carbohydrate intakes and severe water deficiencies that restrict the plant’s ability to 
perform regular photosynthesis. These would inhibit tree growth and affect the physiological 
conditions of the seedlings, such as the diameter of the stem, the plant’s height, and total 
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point density, which can be measured. The study could be used to differentiate between 
infected and uninfected oil palm seedlings towards an early detection approach and 
management control of the disease (Husin et al., 2021). 

MATERIALS AND METHODS

Study Area

The study was conducted in an oil palm greenhouse nursery located at Sime Darby 
Plantation Banting, Selangor, Malaysia (2°48’08.6” N, 101°27’33.0” E). The greenhouse 
was utilised to cultivate all seedlings, maintaining regulated humidity and temperature 
levels, where the area was 16 m length × 6 m width × 2 m height. The roof and the wall 
were made from transparent UV plastic, and black netting was used to cover them. UV 
plastic was used to prevent the seedlings from getting excess water from the rain and 
harmful UV light, while black netting was used to reduce heat from the sun. There was a 
control system that could automatically adjust the amount of water and fertilisers applied 
to all the seedlings; therefore, all the seedlings could be monitored. The temperature of the 
greenhouse was averaged at 27°C, and the humidity was about 90%. The seedlings used 
for this study were Tenera hybrids, and the seedlings were eight months old. One hundred 
BSR-infected seedlings (INF) were inoculated with G. boninense inoculum (Naidu et al., 
2018) by attaching a colonised G. boninense rubberwood block to the roots of the seedlings 
for five months, and only 20 healthy seedlings (NONF) were used as a control. 

The arrangement of seedlings in the greenhouse was as follows: five lines of infected 
seedlings and one line for non-infected seedlings, each consisting of 20 seedlings at a 
distance of 0.5 m apart from each other. Six water tanks were placed in the middle of 
the greenhouse to supply water through a drip irrigation system, where the seedlings 
received approximately 1.0 L/polybag/day. They were fertilised with 50 g nitrogen 
(N), phosphorus (P) and potassium (K) solid fertiliser according to plantation practice. 
Biosafety guidelines were followed by implementing the Integrated Ganoderma 
Management (IGM) system by all the personnel and researchers working in the nursery 
facilities. The infected and non-infected plants were placed without barriers according to 
plantation practices. The infection process that occurs after root contact with an infection 
source has been proven by years of extensive investigation, both in the lab and the field 
(Rees et al., 2009). In the early stages of the disease, spores were not involved, while both 
the infection process and bracket formation on young, infected palms did not contribute 
to the same (Sanderson, 2005).

For data gathering, the scanner was positioned atop a surveying tripod at a height of 
approximately one metre. The area was scanned from eight scan points to capture the 3D 
image of the seedlings (Figure 1). Six high-reflective sphere references were arranged at 
a specific point that could be detected from all scan points. The function of the sphere 
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was to transform the multiple different views of images into the same coordinate frame. 
Despite the position of the scan, the geometry of the spheres was noticeable, and it was 
easily used to merge the scan files in case it could not detect the scan locations (Bornaz & 
Rinaudo, 2004). The data acquisitions were taken every two weeks.

Point Cloud Processing Using SCENE Software

The laser scans were recorded on a removable SD memory card that was subsequently 
transferred for further analysis using SCENE software (version 6.2, FARO Technologies, 
Inc.). SCENE is FARO’s processing software for point clouds, where the main steps 
involved in post-processing are filtering, registration, and extraction of the area of interest 
(AOI). The “registration” step was completed to match the multiple scan positions and 
synchronise the laser point data to create a cluster of point clouds. Before filtering, the 
scan points usually contain noise caused by reflections on water in the polybags and the 
presence of small particles in the air. Thus, the desired scan points could be corrected, 
and noise could be removed from the scans by using a filter. The scan point clouds were 
created first, and then a “clipping box” was used to isolate the AOI from the environment. 
This enabled “slicing” the point cloud and “clipping” (separate) specific areas as needed 
to display or hide certain points of the 3D point cloud. 

Stem Diameter and Height Measurements 

The stem diameter was measured in the SCENE software, where parts of the seedlings 
were zoomed, and a “measure points” tool was used to obtain the cross-section image of 
the stem seedlings. The stem diameter was measured at the middle section of the stem, 

Figure 1. Setup of data acquisition
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which was about 2 cm from the base or soil level. Meanwhile, the height of the seedlings 
was measured from the tip of the plant to the base or soil level and was obtained using 
CloudCompare software (Cloud Compare [GPL software] v2.9 Omnia). The steps were 
to save the .pts file from the SCENE point cloud data, import it into the CloudCompare 
software, and save the file as a .bin file. The format .bin was used because it was smaller 
and more compatible with the CloudCompare software. Next, the image was converted 
into a scalar field image in Z coordinates. After that, outliers and unwanted objects, i.e., 
water tanks and poles, were removed through the segmentation process using a “segment” 
tool and a “cross-section” tool. The top polybags, which were about 40 cm in height, were 
set as a reference for the ground level to measure the height of the oil palm seedlings. 
The height was considered from the top of the soil, where all the seedlings had almost 
the same planting depth. The oil palm seedlings’ point cloud images that were processed 
in the CloudCompare software are displayed in Figure 2.

Figure 2. Steps of point cloud processing: (a) Conversion to scalar image; (b) Removal of unwanted objects; 
(c) Polybags separation; and (d) Metric measurements

 

(a) (b)

(c) (d)
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Measurements of Point Density

The plant density, which consists of point cloud data, was calculated using the volume 
density features in the CloudCompare software (Girardeau-Montaut, 2016). LiDAR sensor 
measured the reflected pulses; therefore, a scanned object with a larger area and volume 
would reflect higher pulses. A similar approach was used, where a segmentation process was 
undertaken to remove all the outliers and unnecessary captured objects such as polybags, 
poles, pipelines and water tanks. After that, the geometric features tool was selected, and 
then the volume density was ticked to obtain the point density of the NONF and INF oil 
palm seedlings. The tool’s main function was to estimate the volume density captured by 
TLS by counting each point in the point cloud.

Manual Measurement of the Seedlings

The physical properties of the seedlings were manually measured to compare and validate 
the results from TLS scans. A flexible steel measuring tape was used to measure the 
maximum height, which was determined from the soil surface in the polybag to the tip of 
the seedlings. Then, the stem diameter of the seedlings was measured by using a stainless 
steel vernier calliper. Similar to the point clouds measurement, the stem diameter was 
measured at a height of 2 cm from the base or soil level (Figure 3). Both measurements, 
height and stem diameter, were repeated three times and averaged. In total, four temporal 
measurements were taken, and the interval between the measurements was two weeks. 

Statistical Analysis

A t-test was used to check and observe the significant difference in mean height and mean 
stem diameter between the eight-month INF and NONF oil palm seedlings. In addition, a 

Figure 3. Measurements of oil palm seedlings: (a) manual; and (b) LiDAR point cloud measurements

(a) (b)
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Tukey HSD test was conducted to determine significant differences in the temporal changes 
between the measurements. Each statistical analysis was run using the JMP statistical 
software package (SAS Institute, Cary, USA). The α value was set to 0.05 confidence 
level. Furthermore, a correlation analysis was performed using Microsoft Excel (Microsoft, 
Redmond, WA) to observe the association between the manual measurement and TLS 
measurement. The closer the R2 value to 1.0, the higher the correlation of the measurements. 
Figure 4 shows the steps of the method used in this study.

Figure 4. Flowchart of the method

Manual data measurement and 
collection

Start

TLS data measurement and collection 
(scanning)

Height of seedlings and diameter of 
stem tabulation

Point cloud processing and crop surface 
model (CSM)

Metric measurements-height, diameter and 
point density

Statistical analysis

Results comparison

End

RESULTS AND DISCUSSION

Analysis of Height and Stem Diameter

Figure 5 shows that the mean height of NONF and INF seedlings showed a continuous 
increment from the first measurement to the fourth measurement with R2 values, 0.97 for the 
NONF seedlings and 0.98 for the INF seedlings. The mean height of the NONF seedlings 
increased with an average difference of 0.154 m ± 0.05 cm, while the mean height of the INF 
seedlings increased with an average difference of 0.139 m ± 0.05 cm over the six weeks of 
TLS measurements in the nursery. Tukey HSD test showed significant differences between 
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all measurement times except the first and second measurements of the NONF seedlings 
(Table 1). The NONF seedlings had the highest and the lowest difference, which was from 
the second to the third measurement (0.22 m ± 0.05 cm) and from the first to the second 
measurement (0.073 m ± 0.05 cm), respectively. In all measurements, the mean height of 
NONF seedlings was significantly higher compared to INF seedlings at a 0.05 confidence 
level with all p-values less than 0.0001. The results show that the growth of NONF seedlings 
was better than the INF seedlings. NONF seedlings have a well-developed root system 
that can efficiently absorb water and nutrients from the soil. These nutrients are essential 

Table 1
Tukey HSD test of temporal measurements for mean height and mean stem diameter

Type of 
Seedlings

Comparison of 
Measurements

Mean height Mean stem diameter
Difference

(m ± 0.05cm) p-value Difference
(mm ± 0.01 mm) p-value

NONF First and second 0.073 0.6126 2.487 0.2914
Second and third 0.220 0.0026* 2.487 0.0835
Third and fourth 0.168 0.0334* 4.092 0.5893

INF First and second 0.152 0.0011* 0.018 1.000
Second and third 0.184 <0.0001* 5.314 <0.0001*
Third and fourth 0.081 0.0303* 6.887 <0.0001*

Note. * significant at 5% level

Figure 5. Mean height (± standard deviation) of the NONF and INF seedlings
Note. * significant at 5% level
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for growth, photosynthesis, and plant vigour. Meanwhile, 
the fungus G.boninense causes root rot (Figure 6), 
severely impairing the seedling’s ability to absorb water 
and nutrients. This leads to nutrient deficiencies, which 
stunts growth and weakens the seedlings (Surendran et al., 
2017). This means that BSR disease significantly affects 
the growth of oil palm seedlings. The results from Table 
1 show that the height parameter is a better indicator for 
the temporal measurements, where all seedlings showed 
significant differences between the measurements except 
for the first and second measurements in NONF seedlings. 

The mean stem diameter of NONF seedlings in Figure 
7 showed an increasing trend from the first measurement 
to the fourth measurement with R2 values of 0.69. The 
growth of the mean stem diameter of the NONF seedlings 
continuously increased with an average difference of 
2.375 m ± 0.01 mm. In contrast, the INF seedlings 

Figure 6. Root and stem bole damage 
to oil palm seedlings due to BSR 

showed a relatively slower growth rate with a mean diameter difference of 4.073 m ± 
0.01mm over the six weeks of TLS measurements in the nursery. Even though the increase 
in stem diameter from the first to the second measurement and from the second to the 
third measurement were not significant, the trend showed an increase in healthy growth 
seedlings (Table 1). There was a slight decrease in the mean stem diameter from the third 
to the fourth measurement (1.517 ± 0.01 mm). The reduction in the mean diameter of the 
NONF seedlings between the third measurement and the fourth measurement might be due 
to the growth phase transition, where the seedlings might have transitioned from a rapid 
growth phase to a maintenance or stress response phase, where energy and resources were 
redirected to support other parts of the plant or to cope with environmental challenges, 
leading to temporary reductions in stem diameter (Huijser & Schmid, 2011). Meanwhile, 
the mean stem diameter of the INF seedlings was inconsistent with an R2 value of 0.0005. 
It decreased from the first measurement to the second measurement (0.018 ± 0.01 mm), 
then increased at the third measurement (5.314 ± 0.01 mm) before drastically decreasing 
for the fourth measurement (6.887 ± 0.01 mm). The inconsistency of stem diameter might 
be due to the plant stress responses, where the response of the seedlings to G.boninense 
infection can fluctuate, with periods of higher stress leading to reduced growth and periods 
of recovery or compensatory growth (Shoresh et al., 2010). This could cause the stem 
diameter to increase at one point (as seen in the third measurement) and then decrease 
again as the infection progresses or as the seedlings exhaust their resources. In addition, 
the activation of defence mechanisms such as lignification (thickening of cell walls) or the 
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production of antifungal compounds by INF seedlings might temporarily affect growth 
rates, leading to inconsistent stem diameters (Faizah et al., 2022). The mean stem diameter 
of NONF seedlings was significantly larger than INF seedlings in all measurements at 0.05 
confidence level with a p-value for the first measurement of 0.002, the second and fourth 
measurements were less than 0.0001, and the third measurement was 0.0031.

Analysis of Point Density 

Figure 8 shows the average point density of the NONF and INF oil palm seedlings. The 
point density can be considered as the volume or surface area representation of the seedlings 
(Hosoi & Omasa, 2009). The first measurement of the point cloud was excluded due to an 
error in the NONF seedlings. The NONF seedlings presented higher point density from 
the second measurement to the fourth measurement compared to INF seedlings. It shows 
that NONF seedlings had normal and healthier growth compared to the stunted growth of 
INF seedlings. The point density for the NONF seedlings decreases from the second to 
the fourth measurement, with an average difference of point density of about 51 million 
points. Meanwhile, the point density of the INF seedlings increases from the second to 
third measurement and then decreases from the third to fourth measurement. The average 
difference in point density from the second to fourth measurement was about 23 million 
points. Growing plants often develop more complex surface structures with varied textures 
and angles. This increased roughness can scatter the LiDAR pulses more diffusely, reducing 
the number of pulses that return directly to the sensor and decreasing the point density 

Figure 7. Mean diameter (± standard deviation) of the NONF and INF seedlings
Note. * significant at 5% level
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(Rosette et al., 2012). Meanwhile, as the plant grows and the leaf orientation becomes more 
varied, some leaves may become angled in such a way that they reflect less laser energy 
back to the sensor, reducing point density (Gregorio & Llorens, 2021).

The differences in results between the NONF and INF seedlings were not likely because 
of fertiliser due to the same amount of fertiliser used for both types of seedlings. Two 
examples of infection modes are roots that came into contact with nearby infected palms 
and airborne basidiospores. The basidiospores of G.boninnense initiate root damage by 
germinating on the part of oil palm seedlings and invading root tissues with hyphae and 
secreting enzymes that degrade the root structure (Bharudin et al., 2022). It was noted that 
contaminated soil tissues rather than airborne spores were the cause of the disease spreading 
to healthy roots so widely (Sanderson, 2005). The NONF seedlings maintained optimal 
chlorophyll content, which allowed for efficient photosynthesis, which was needed for 
growth and development. However, the INF seedlings showed chlorosis, which diminishes 
the plant’s ability to perform photosynthesis and leads to less energy for growth. It was 
also stated that the effects of the BSR disease infection could be seen on the seedlings at 
four and seven months after planting, which affected the development and growth of the 
oil palm seedlings (Faizah et al., 2022). In addition, using eye and manual inspection, the 
colour and condition of the leaves in some INF seedlings turned from green to yellow and 
then necrotic and wilted. Also, fungal whitish fruiting bodies like the mushroom structure 
were seen around the base of the stem or in the soil near the roots.

Correlation Analysis

The correlation analysis for the TLS and manual methods showed a strong relationship 
in every measurement, with an average of R2 equal to 0.95 for the height (Figure 9) and 
an average of R2 equal to 0.93 for the stem diameter (Figure 10). The range value of R2 

Figure 8. Point density of NONF seedlings and INF seedlings
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from the first until the fourth readings of the height was between 0.9272 and 0.9646, 
while the stem diameter was between 0.8601 and 0.9810. The highest correlation was 
at the second measurement of stem diameter with R2  equal to 0.981, and the lowest 
correlation was at the third measurement of stem diameter with R2  equal to 0.8601. 
LiDAR technology is known for its high accuracy and precision in measuring dimensions. 
This accuracy translates into measurements that have a very high correlation with the 
manual method. Unlike manual measurements, which can vary depending on the person 
performing the measurement, LiDAR provides consistent results. The high correlation 
values showed that ground-based LiDAR, like TLS, was a reliable tool to measure the 
diameter and height of the seedlings. It was stated by Johnson and Liscio (2015) that the 
height determination of an object by using TLS was duplicable and accurate on a static 
object. Moreover, Maas et al. (2008) found that TLS was able to present good and accurate 
stem geometry data and was efficient for plants. Lumme et al. (2008) also mentioned 
that TLS was useful equipment for growth height estimation and could be used as a 
precision farming tool in agriculture. Instead of collecting data manually, TLS may be 
used for metric measurements since correlation analysis showed satisfactory outcomes. 
However, based on this study, more scan points are needed to obtain a clearer image of 

Figure 9. Correlation analysis of height: (a) First measurement; (b) Second measurement; (c) Third 
measurement; and (d) Fourth measurement
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the stem cross-section. Overall, the high correlations (R² values) suggest that LiDAR is a 
reliable method that can produce results closely matching those obtained through manual 
measurements. The factors mentioned contribute to the strong relationship observed 
between the two measurement methods.

The metric features developed utilising point cloud data for BSR disease detection were 
height, stem diameter, and point density. The parameters or metric features could be utilised 
to distinguish between oil palm seedlings that are not infected with BSR and seedlings that 
are BSR-infected. This was the first in-depth analysis of oil palm seedlings in the nursery 
employing TLS to distinguish the changes brought by BSR disease. For the early diagnosis, 
management, and control of the disease, this cutting-edge image processing method using 
the physical characteristics of the oil palm seedlings was crucial. With the aid of pre-and 
post-processing facilities, it was also practical for in-situ applications. To achieve precision 
agricultural objectives, TLS offers information at the plant level. A sensing system utilising 
innovative algorithms and on-site technology may be able to deliver more accurate data 
to create a current health database for oil palm seedlings in nurseries.

Further research into the features of the oil palm seedlings could be undertaken for 
semi-auto calculation. Three characteristics - height, stem diameter, and point density 

Figure 10. Correlation analysis of stem diameter: (a) First measurement; (b) Second measurement; (c) Third 
measurement; and (d) Fourth measurement
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- could serve as the basis of the application. In this study, LiDAR showed a significant 
potential for BSR detection in oil palm seedlings, with accuracies of around 90%. Future 
health monitoring with LiDAR holds great promise, especially when coupled with 
chlorophyll data. For the classification of BSR diseases, further research may be done to 
establish a standard range based on the height, diameter, and point density of NONF and 
INF seedlings. Further research towards a model for BSR detection that includes height, 
diameter, and point density is possible. It has the potential to build complex models that 
take into consideration the leaf orientation, laser returns, and percentage of occlusion in 
oil palm seedlings.

The high-density LiDAR data is a useful tool for foliar and metric measurements. 
Although much effort needs to be made before realising this, these and other preliminary 
data may imply it. A 3D view of the seedlings could be used, and the view can be rotated 
to check the overlapping fronds between the seedlings. Additionally, by physically 
weighing the seedlings, the point density of the oil palm seedlings may be compared with 
their biomass. The outcomes further demonstrated the accuracy and dependability of TLS 
measurements. Despite its promise, the biggest disadvantage of the suggested method was 
the procedure of extracting the data, as some parameters required to be calculated manually. 
In the future, a deep learning technique might be used to automate the feature extraction 
process. The plantation manager could examine the condition of the seedlings in real time 
and create an alert system utilising an online platform. More research should be done to 
analyse oil palm seedlings with various levels of infection severity. Future research should 
give greater thought to adapting the data for a general approach to detecting Ganoderma 
disease because there are many potential methods to improve the procedures for usefulness 
and operation in plantation nurseries. To distinguish between oil palm seedlings that are 
not infected by BSR and BSR-infected seedlings, this study gives fundamental findings 
about the usage of static LiDAR.   

The results of this work demonstrate the potential of TLS for precise 3D measurements 
of oil palm seedlings. It offers low-cost, high degree of information and is accurate, 
non-destructive, and high-precision measurements (Stovall et al., 2018). TLS allows for 
repeatable views and imaging from various angles and just comes at a one-time initial 
equipment cost. The benefits of the terrestrial laser scanner include its small size, portability, 
lightweight, and wide scanning range. For remote sensing, TLS sensors would be more 
economical and cost-effective. Both professionals and amateurs could easily manage it 
(Liang et al., 2016). This is the initial thorough investigation of the physical characteristics 
of oil palm seedlings utilising TLS for BSR disease. Additionally, it is a non-destructive 
measurement because it eliminates the need for human measurement, which might break 
and spoil the seedlings. Manual observation is time-consuming, individualised for each 
worker, and potentially exhausting. Continuous monitoring of each seedling is required 
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for naked-eye observation, which is time-consuming. Another concern is the lack of 
personnel in the plantation sector. The novel discovery of this study has the potential to 
close a knowledge gap in the field of laser scanning research and be an eye-opener for the 
community in this area.

TLS is regarded as an easy-to-use technology for information collection. Thus, since 
it is independent of the individual tasks of the workers, the process of scouting seedlings 
can be completed more quickly and effectively. Additionally, the use of a portable laser 
scanner may give greater flexibility and precision in terms of visuals and dimensions. 
Furthermore, LiDAR data may be crucial because it allows for the investigation and 
potential expansion of the model correlations between metric measurements and the level of 
BSR infection across a larger area. The progress and growth of laser scanning technology, 
which consistently enhances data quality, scanning speeds, and spatial coverage and offers 
a variety of platform types, bodes well for the proposed method in this study, even though 
it necessitates a processing procedure.

The initial setup costs for a ground-based laser scanner are around RM300,000, 
including the accessories, software and training for a single operator. Additional costs for 
calibration, software updates, and possible repairs are about RM 15,000. The advantages of 
ground-based LiDAR are less personnel needed; a single operator can handle the scanner 
with minimal assistance, saving labour costs and rapidly scanning large areas, reducing field 
time and field operation. The accuracy of the sensor is also extremely high, and the quality 
of the data is comprehensive, allowing for repeated analysis and additional measurements 
without returning to the field. Meanwhile, the manual vegetative measurements are around 
RM144,000 annually for four personnel. Manual measurements are arduous, and the 
fieldwork might take several hours to days, depending on the area size and the number 
of measurements. The data is usually recorded manually and entered in spreadsheets or 
databases, which can be time-consuming. The initial investment for a laser scanner is 
substantial, but the operational costs can be lower in the long run due to reduced labour 
and time efficiency and high-accuracy measurements.

Future research may examine the differences between BSR-infected oil palm seedlings 
and other symptoms of abiotic stresses such as drought. Fast and on-site diagnosis of 
plant diseases and long-term monitoring of plant health conditions are now possible, 
especially in situations with limited resources, thanks to portable imaging technologies 
(such as smartphones). By exchanging and transmitting data almost in real-time, the recent 
development of field-portable sensor equipment, such as smartphone devices or plant 
wearables, opens up promising new opportunities for the in-situ investigation of pathogens 
in the field (Li et al., 2020). Today’s smartphones come with LiDAR sensors, making it 
possible to create mobile applications for identifying and categorising BSR illnesses using 
deep-learning object identification models.
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CONCLUSION

In conclusion, the analysis demonstrates that the growth and development of oil palm 
seedlings are significantly impacted by Basal Stem Rot (BSR) disease, as evidenced by 
the differences in height, stem diameter, and point density between non-infected (NONF) 
and infected (INF) oil palm seedlings. The NONF seedlings consistently showed superior 
growth, indicating that healthy root systems are crucial for nutrient uptake and overall plant 
vigour. In contrast, the INF seedlings exhibited stunted growth due to the damaging effects 
of the G. boninense fungus, which impairs the roots’ ability to absorb nutrients and water, 
leading to nutrient deficiencies and weakened seedlings. The use of ground-based LiDAR, 
specifically the Terrestrial Laser Scanner (TLS) technology, proved to be a reliable and 
precise method for monitoring the physical characteristics of oil palm seedlings. The high 
correlation between TLS and manual measurements highlights the potential of TLS as a 
non-destructive, accurate, and efficient tool for early detection and management of BSR 
disease in oil palm nurseries. Future research should focus on enhancing the TLS-based 
model by incorporating additional parameters like chlorophyll data and exploring the use 
of deep learning techniques for automated feature extraction. The findings from this study 
pave the way for more advanced and cost-effective approaches to disease management 
in agriculture, highlighting the value of integrating modern sensing technologies with 
traditional plantation practices.

ACKNOWLEDGEMENT

This research was funded by Universiti Putra Malaysia (UPM) under research project code 
GP-IPM/2021/9697200.

REFERENCES 
Akul, Y., Kumar, V., & Chong, K. P. (2018). Designing primers for loop-mediated isothermal amplification 

(LAMP) for detection of Ganoderma boninense. Bulgarian Journal of Agricultural Science, 24(5), 854-
859.

Azahar, T. M., Mustapha, J. C., Mazliham, S., & Boursier, P. (2011). Temporal analysis of basal stem rot disease 
in oil palm plantations: An analysis on peat soil. International Journal of Engineering & Technology, 
11(3), 96–101.

Azmi, A. N. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of 
Ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), 
Article 3920. https://doi.org/10.3390/rs12233920

Azmi, A. N. N., Khairunniza-Bejo, S., Jahari, M., Muharram, F. M., & Yule, I. (2021). Identification of a 
suitable machine learning model for detection of asymptomatic Ganoderma boninense infection in oil 
palm seedlings using hyperspectral data. Applied Sciences, 11(24), Article 11798. https://doi.org/10.3390/
app112411798



1155Pertanika J. Sci. & Technol. 33 (3):  1137 - 1158 (2025)

Growth Monitoring of Oil Palm Seedlings

Azuan, N. H., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2019). Analysis of 
changes in oil palm canopy architecture from basal stem rot using terrestrial laser scanner. Plant Disease, 
103(12), 3218-3225. https://doi.org/10.1094/PDIS-10-18-1721-RE

Bharudin, I., Wahab, A. F. F. A., Samad, M. A. A., Yie, N. X., Zairun, M. A., Bakar, F. D. A., & Murad, A. 
M. A. (2022). Review update on the life cycle, plant–microbe interaction, genomics, detection and 
control strategies of the oil palm pathogen Ganoderma boninense. Biology, 11(2), Article 251. https://
doi.org/10.3390/biology11020251

Bornaz, L., & Rinaudo, F. (2004). Terrestrial laser scanner data processing. XXth ISPRS Congress Istanbul, 
123(123006), 1–4.

Buja, I., Sabella, E., Monteduro, A. G., Chiriacò, M. S., De Bellis, L., Luvisi, A., & Maruccio, G. (2021). 
Advances in plant disease detection and monitoring: From traditional assays to in-field diagnostics. 
Sensors, 21(6), Article 2129. https://doi.org/10.3390/s21062129

Cabo, C., Ordóñez, C., López-Sánchez, C. A., & Armesto, J. (2018). Automatic dendrometry: Tree detection, 
tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth 
Observation and Geoinformation, 69, 164-174.

Fahey, T., Pham, H., Gardi, A., Sabatini, R., Stefanelli, D., Goodwin, I., & Lamb, D. W. (2020). Active and 
passive electro-optical sensors for health assessment in food crops. Sensors, 21(1), Article 171. https://
doi.org/10.3390/s21010171

Faizah, R., Putranto, R. A., Raharti, V. R., Supena, N., Sukma, D., Budiani, A., Wening, S., & Sudarsono, S. 
(2022). Defense response changes in roots of oil palm (Elaeis guineensis Jacq.) seedlings after internal 
symptoms of Ganoderma boninense Pat. infection. BMC Plant Biology, 22(1), Article 139. https://doi.
org/10.1186/s12870-022-03493-0

Farraji, H., Dahlan, I., & Eslamian, S. (2021). Water recycling from palm oil mill effluent. In S. Eslamian (Ed.), 
Handbook of Water Harvesting and Conservation: Basic Concepts and Fundamentals (pp. 307-320). John 
Wiley & Sons. https://doi.org/10.1002/9781119478911.ch20

Girardeau-Montaut, D. (2016). CloudCompare - Point Cloud Processing Workshop. EDF R&D Telecom 
ParisTech. https://www.eurosdr.net/sites/default/files/images/inline/04-cloudcompare_pcp_2019_public.
pdf

Gregorio, E., & Llorens, J. (2021). Sensing crop geometry and structure. In R. Kerry & A. Escolà (Eds.), Sensing 
Approaches for Precision Agriculture (pp. 59-92). Springer. https://doi.org/10.1007/978-3-030-78431-7_3

Hillman, S., Wallace, L., Reinke, K., & Jones, S. (2021). A comparison between TLS and UAS LiDAR to 
represent eucalypt crown fuel characteristics. ISPRS Journal of Photogrammetry and Remote Sensing, 
181, 295-307. https://doi.org/10.1016/j.isprsjprs.2021.09.008

Hilmi, N. H. Z., Idris, A. S., Maizatul-Suriza, M., Madihah, A. Z., & Nur-Rashyeda, R. (2022). Molecular 
PCR assays for detection of Ganoderma pathogenic to oil palm in Malaysia. Malaysian Applied Biology, 
51(1), 171-182. https://doi.org/10.55230/mabjournal.v51i1.2201

Hosoi, F., & Omasa, K. (2009). Estimating vertical plant area density profile and growth parameters 
of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. 



1156 Pertanika J. Sci. & Technol. 33 (3):  1137 - 1158 (2025)

Nur Azuan Husin, Ray Clement Ridu, Normahnani Md Noh and Siti Khairunniza Bejo

ISPRS Journal of Photogrammetry and Remote Sensing, 64(2), 151-158. https://doi.org/10.1016/j.
isprsjprs.2008.09.003

Huijser, P., & Schmid, M. (2011). The control of developmental phase transitions in plants. Development, 
138(19), 4117-4129. https://doi.org/10.1242/dev.063511

Husin, N. A., Bejo, S. K., Abdullah, A. F., Kassim, M. S., & Ahmad, D. (2021). Relationship of oil palm crown 
features extracted using terrestrial laser scanning for basal stem rot disease classification. Basrah Journal 
of Agricultural Sciences, 34, 1-10. https://doi.org/10.37077/25200860.2021.34.sp1.1

Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Aziz, M. H. (2020a). 
Classification of basal stem rot disease in oil palm plantations using terrestrial laser scanning data and 
machine learning. Agronomy, 10(11), Article 1624. https://doi.org/10.3390/agronomy10111624

Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., Ahmad, D., & Azmi, A. N. (2020b). 
Application of ground-based LiDAR for analysing oil palm canopy properties on the occurrence of 
basal stem rot (BSR) disease. Scientific Reports, 10(1), Article 6464. https://doi.org/s41598-020-62275-6

Husin, N. A., Khairunniza-Bejo, S., Abdullah, A. F., Kassim, M. S., & Ahmad, D. (2022). Multi-temporal 
analysis of terrestrial laser scanning data to detect basal stem rot in oil palm trees. Precision Agriculture, 
23(1), 101-126. https://doi.org/10.1007/s11119-021-09829-4

Husin, N. A., Khairunniza–Bejo, S., Abdullah, A. F., Kassim, M. S. M., & Ahmad, D. (2020c). Study of the oil 
palm crown characteristics associated with Basal Stem Rot (BSR) disease using stratification method of 
point cloud data. Computers and Electronics in Agriculture, 178, Article 105810. https://doi.org/10.1016/j.
compag.2020.105810

Johnson, M., & Liscio, E. (2015). Suspect height estimation using the Faro Focus3D laser scanner. Journal of 
Forensic Sciences, 60(6), 1582-1588. https://doi.org/10.1111/1556-4029.12829

Khairunniza-Bejo, S., Shahibullah, M. S., Azmi, A. N. N., & Jahari, M. (2021). Non-destructive detection 
of asymptomatic Ganoderma boninense infection of oil palm seedlings using NIR-hyperspectral 
data and support vector machine. Applied Sciences, 11(22), Article 10878. https://doi.org/10.3390/
app112210878

Li, Z., Yu, T., Paul, R., Fan, J., Yang, Y., & Wei, Q. (2020). Agricultural nanodiagnostics for plant diseases: 
Recent advances and challenges. Nanoscale Advances, 2(8), 3083-3094. https://doi.org/10.1039/
C9NA00724E

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, 
F., Holopainen, M., & Vastaranta, M. (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal 
of Photogrammetry and Remote Sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

Liu, G., Wang, J., Dong, P., Chen, Y., & Liu, Z. (2018). Estimating individual tree height and diameter at 
breast height (DBH) from terrestrial laser scanning (TLS) data at plot level. Forests, 9(7), Article 398. 
https://doi.org/10.3390/f9070398

Lumme, J., Karjalainen, M., Kaartinen, H., Kukko, A., Hyyppä, J., Hyyppä, H., Jaakkola, A., & Kleemola, J. 
(2008). Terrestrial laser scanning of agricultural crops. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, 37, 563-566.



1157Pertanika J. Sci. & Technol. 33 (3):  1137 - 1158 (2025)

Growth Monitoring of Oil Palm Seedlings

Maas, H. G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory parameter determination 
from terrestrial laser scanner data. International Journal of Remote Sensing, 29(5), 1579-1593. https://
doi.org/10.1080/01431160701736406

Madihah, A. Z., Idris, A. S., & Rafidah, A. R. (2014). Polyclonal antibodies of Ganoderma boninense isolated 
from Malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34), 
3455-3463. https://doi.org/10.5897/AJB2013.13604

Madihah, A. Z., Maizatul-Suriza, M., Idris, A. S., Bakar, M. F. A., Kamaruddin, S., Bharudin, I., Bakar, F. 
D. A., & Murad, A. M. A. (2018). Comparison of DNA extraction and detection of Ganoderma, causal 
of basal stem rot disease in oil palm using loop-mediated isothermal amplification. Malaysian Applied 
Biology, 47(5), 119-127.

Naidu, Y., Siddiqui, Y., Rafii, M. Y., Saud, H. M., & Idris, A. S. (2018). Inoculation of oil palm seedlings in 
Malaysia with white-rot hymenomycetes: Assessment of pathogenicity and vegetative growth. Crop 
Protection, 110, 146-154. https://doi.org/10.1016/j.cropro.2018.02.018

Parveez, G. K. A., Kamil, N. N., Zawawi, N. Z., Ong-Abdullah, M., Rasuddin, R., Loh, S. K., Selvaduray, K. 
R., Hoong, S. S., & Idris, Z. (2022). Oil palm economic performance in Malaysia and R&D progress in 
2021. Journal of Oil Palm Research, 34(2), 185-218. https://doi.org/10.21894/jopr.2022.0036

Pitkänen, T. P., Raumonen, P., Liang, X., Lehtomäki, M., & Kangas, A. (2021). Improving TLS-based stem 
volume estimates by field measurements. Computers and Electronics in Agriculture, 180, Article 105882. 
https://doi.org/10.1016/j.compag.2020.105882

Rees, R. W., Flood, J., Hasan, Y., Potter, U., & Cooper, R. M. (2009). Basal stem rot of oil palm (Elaeis 
guineensis); Mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology, 
58(5), 982-989. https://doi.org/0.1111/j.1365-3059.2009.02100.x

Rosette, J., Suárez, J., Nelson, R., Los, S., Cook, B., & North, P. (2012). Lidar remote sensing for 
biomass assessment. Remote Sensing of Biomass—Principles and Applications, 24, 3-27. https://doi.
org/10.5772/17479

Sanderson, F. R. (2005). An insight into spore dispersal of Ganoderma boninense on oil palm. Mycopathologia, 
159(1), 139-141. https://doi.org/10.1007/s11046-004-4436-2

Santoso, H., Gunawan, T., Jatmiko, R. H., Darmosarkoro, W., & Minasny, B. (2011). Mapping and identifying 
basal stem rot disease in oil palms in North Sumatra with QuickBird imagery. Precision Agriculture, 
12(2), 233–248. https://doi.org/10.1007/s11119-010- 9172-7

Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal 
biocontrol agents. Annual Review of Phytopathology, 48(1), 21-43. https://doi.org/10.1146/annurev-
phyto-073009-114450

Stovall, A. E., Anderson-Teixeira, K. J., & Shugart, H. H. (2018). Assessing terrestrial laser scanning for 
developing non-destructive biomass allometry. Forest Ecology and Management, 427, 217-229. https://
doi.org/10.1016/j.foreco.2018.06.004

Surendran, A., Siddiqui, Y., Saud, H. M., & Manickam, N. S. A. A. S. (2017). The antagonistic effect of phenolic 
compounds on ligninolytic and cellulolytic enzymes of Ganoderma boninense, causing basal stem rot 



1158 Pertanika J. Sci. & Technol. 33 (3):  1137 - 1158 (2025)

Nur Azuan Husin, Ray Clement Ridu, Normahnani Md Noh and Siti Khairunniza Bejo

in oil palm. International Journal of Agriculture & Biology, 19, 1437-1446. https://doi.org/10.17957/
IJAB/15.0439

Wagers, S., Castilla, G., Filiatrault, M., & Sanchez-Azofeifa, G. A. (2021). Using TLS-measured tree attributes 
to estimate aboveground biomass in small black spruce trees. Forests, 12(11), Article 1521. https://doi.
org/10.3390/f12111521

Yap, P., Rosdin, R., Abdul-Rahman, A. A. A., Omar, A. T., Mohamed, M. N., & Rahami, M. S. (2021). Malaysian 
sustainable palm oil (MSPO) certification progress for independent smallholders in Malaysia. In IOP 
Conference Series: Earth and Environmental Science (Vol. 736, No. 1, p. 012071). IOP Publishing. https://
doi.org/10.1088/1755-1315/736/1/012071

Zevgolis, Y. G., Alsamail, M. Z., Akriotis, T., Dimitrakopoulos, P. G., & Troumbis, A. Y. (2022). Detecting, 
quantifying, and mapping urban trees’ structural defects using infrared thermography: Implications for 
tree risk assessment and management. Urban Forestry & Urban Greening, 75, Article 127691. https://
doi.org/10.1016/j.ufug.2022.127691


